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Abstract. This paper defines and studies a general algorithm for constructing new families 
of fractals in Euclidean space. This algorithm involves a sequences of linear interscale 
transformations that proceed from large to small scales. We find that the fractals obtained 
in this fashion decompose in intrinsicfashion into linear combinations of a variable number 
of “addend’ fractals. The addends’ relative weights and fractal dimensionalities are 
obtained explicitly through an interscale matrix, which we call the transfer mafrix of the 
fractal (TMF). We first demonstrate by a series of examples, then prove rigorously, that 
the eigenvalues of our TMFS are real and positive, and that the fractal dimensions of the 
addend fractals are the logarithms of the eigenvalues of our TMF. We say that these 
dimensions form the overall fractal’s eigendimensional sequence. The eigenvalues of our 
TMF are integers in the non-random variants of the construction, but are non-integer in 
the random variants. A geometrical interpretation of the eigenvalues and the eigenvectors 
is given. Our TMF have other striking and very special properties that deserve additional 
attention. 

1. Introduction 

Scaling fractals, (Mandelbrot 1975, 1977, 1982) which are self-similar geometrical 
figures that go beyond the standard figures in Euclid, are natural models for physical 
systems in which some properties are invariant under scale transformation. In par- 
ticular, statistical mechanical systems that undergo high-order phase transitions are 
self-similar below the correlation length 5, which is their only characteristic length 
scale. Since the geometry underlying these systems is surely made of neither lines nor 
planes, it must involve self-similar fractals. Statistical mechanics has a very efficient 
method for studying such systems, the renormalisation group: it moves from the 
microscopic length scales towards increasingly larger scales up to 5 (Fisher 1974, 
Aharony 1976) by multiplying lengths by a ‘base’ b. In a particular type of second-order 
phase transition, namely the percolation problem, (Stauff er 1979) fractals have become 
very important (Gefen er al 1981b, Mandelbrot 1984, Mandelbrot and Given 1984, 
Aharony 1984, Proc. Gaithersburg Conf. 1984). The application of renormalisation 
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group techniques for physical systems constructed upon fractals was also studied in 
detail (Gefen et a1 1980, 1981a, 1983). Recently, the applications of fractals in physics 
have grown explosively, (Mandelbrot 1984, Mandelbrot and Given 1984, Gefen 1983) 
and it is no longer possible to summarise them in a few lines. These and related 
developments create a strong continuing need for new fractal constructions. The 
present paper proposes such a construction. Many others can be found in the recent 
literature, such as the fractal squigst. The original phase of factal geometry and of 
its application to physics had been characterised by the ‘adoption’ of various scattered 
shapes that mathematicians had previously advanced for totally different purposes, 
e.g., Sierpinski gaskets and carpets. This phase is now over and fractal geometry and 
its applications are mostly concerned with new fractal constructions. 

A conspicuous feature of the fractals introduced in this paper is the need to 
generalise the definition of fractal dimensionality as a similarity exponent. In the 
simplest cases, D is known to be the (unique) solution of the ‘dimension generating 
equation’ Nb-D = 1, or of various generalisations, such as the randomised variant 
( N ) b - D  = 1 .  When different parts of the fractal are deduced from the whole by different 
ratios rJ = 1 / b,, the dimension generating equation generalises further to become Z byD = 
1. In this paper, the dimension generating equation generalises again, to take the form 
II( N y )  - bD6,] /I = 0, where the quantities N,] form a matrix that we shall call the ‘interscale 
transfer matrix of the fractal’ (TMF). More precisely, our first finding is that D = log, A ,, 
where A ,  is the leading eigenvalue of the TMF. But in addition, we find that the other 
eigenvalues A,  of the TMF are real and positive, that in the non-random case they are 
integers, and that our fractal includes intrinsically a collection of other fractals, each 
of them endowed with a fractal dimensionality of the form logbA,. As a result, the 
unique dimensionality obtained as the solution of ( N ) b D  = 1 is replaced by a number 
of ‘eigen-dimensionalities’ that have a clear geometric and physical meaning. 

1 . 1 .  Summary 

Matrix generalisations of the dimension-generating equation N b - D  = 1 occur in other 
contexts$, but out first encounter with a matrix whose eigenvalues are real and positive 
was a surprise. We propose to explain this observation, first by examples then by 
rigorous argument. 

Thus, this paper divides into two sections having sharply different styles. Section 
2 describes our algorithm, in a somewhat discursive fashion meant to create intuition. 
We start by an example in the plane, and proceed to diverse generalisations, one of 
them in a higher space. The construction of the TMF is explained and observations 
concerning its mathematical features are discussed. Section 3 presents some mathemati- 
cal results, namely diverse theorems regarding the eigenvalues and eigenvectors of the 
TMFS. We realise that physicists will tend to find the treatment in this section to be 
excessively concise, but we feel that it is important to put this treatment in the record. 

t Mandelbrot (1982 chapter 24), Mandelbrot (1984), Mandelbrot and Given (1984) and Proc. Gaithersburg 
Conf. (1984). See also Mandelbrot (l978a and b, figures 5 and 6 )  also Peyritre (1978, 1981) and Mandelbrot 
and Given (1984). 
$ A point of history is of interest to one of the authors (BBM). The study of word frequencies involves an 
exponent that has lately been reinterpreted as a factal dimensionality D (Mandelbrot 1982, page 346). A 
very early reference is Mandelbrot (1955) where D is obtained as the logarithm of the leading eigenvalue 
of a matrix that is in effect a TMF. 
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Section 4 points out open questions, and sketches possible applications of the TMF in 
physics. 

1.2. Background in an elementary fractal construction 

The nature of our construction can be illustrated by examples of sets on the line. First 
example (Mandelbrot 1982, page 151): it is often asserted that the closed segment 
[0, I ]  is self-similar, but this is not quite the case, since the sum of the closed segments 
[0, i] and [f, 11 counts the point i twice: thus the sum of the parts is the segment [0, 11 
plus the point f. To achieve full self-similarity, one must delete the endpoint 1 and 
consider the half-open segment, written as [0, l[. Alternatively, [0, 11 can be viewed 
as the sum of two self-similar sets: the segment [O, 1[ ( D =  1 )  and the point 1 ( D  =O) .  

Second example: as is well known, the triadic Cantor dust is constructed from the 
closed unit interval, which is denoted by [0, 13, by removing the open mid-third interval, 
denoted by ]1/3,2/3[. This is followed by removing the open mid-thirds of [0, 1/31 
and of [2/3, 13 and so on ad injnitum. The Cantor dust, defined as the set of all the 
points that are never removed, is a closed set. It is the sum of two halves, each deduced 
from the whole by a similarity of ratio r = 1 /  b = 1/3. Hence the fractal dimensionality 
of the dust is 

D = log N/log( 1/ r )  =log 2/log 3 - 0.6309. 

The removed cut-outs are called ‘tremas’ (Mandelbrot 1982). Their endpoints obviously 
belong to the Cantor dust, but the dust also contains every point that is the limit of 
trema endpoints but is not itself a trema endpoint. The trema endpoints are denumer- 
able (that is, can be labelled by an index whose values are the integers). Therefore, 
their fractal dimensionality is D = 0. (This D cannot be obtained as log N/log( l / r )  ; 
a subtle issue is involved here; see Mandelbrot (1982, p 383).) 

Now change Cantor’s original procedure so that the tremas become closed intervals. 
In this case, the limit set can be described in intrinsic fashion as the difference of two 
sets having different fractal dimensionalities, namely the Cantor dust ( D  - 0.6309), 
minus the trema endpoints ( D  = 0). This difference is no longer a closed set. 

The present paper involves analogous procedures performed in the plane and in 
higher spaces. Since a direct geometric analysis becomes unwieldy, we devised a 
general analytic approach. The transformations introduced in this fashion are linear, 
hence can be formulated using interscale transfer matrices, the TMFS.  We show that 
the resulting fractals share the leading property of the ‘Cantor dust minus its trema 
endpoints’: in addition to the ‘global’ fractal dimensionality, these fractals involve the 
fractal dimensionalities of the parts that are either added or subtracted. We shall call 
them fractal ‘eigen-dimensionalities’. We expect their values and relative weights to 
affect a system’s physical character and expect our aglorithm to be relevant to physical 
problems. 

Against the background of the one-dimensional ‘Cantor dust minus the trema 
endpoints’, the fact that our fractals decompose additively is not surprising. However, 
many interesting mathematical questions arise, some but not all of which we were able 
to solve. The decomposability of our fractal arises from the fact that the eigenvalues 
of the TMF are non-negative integers and its eigenvectors are real and satisfy some 
special orthogonality relations. These are very special properties for a matrix. Our 
algorithm is not yet completely understood from the mathematical viewpoint, and 
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further understanding of its properties’ relevance to physics is also needed. The purpose 
of this study is to stimulate efforts in both directions. 

1.3. The occurrence of positive real eigenvalues in other problems of physics 

The fact that our TMFS have real and positive eigenvalues has counterparts in other 
problems of statistical physics. When the recursion relations of a renormalisation 
group can be presented as gradient flows, the eigenvalues bAt are real and positive, 
hence the exponents hi of the eigenvalues are real (Wallace and Zia 1974, 1975). 
Gradient flows are found, to third order in E = 4 - d, in the field-theoretical treatment 
of n-component continuous spin vector models. However, in the limit n + 0, the flows 
cease to be described as gradient flows (Aharony 1975); some cases in this limit yield 
complex exponents. This limit corresponds to random systems, and it would be very 
interesting to know of similar results in other random systems. 

2. Examples (non-random and random) and general rules 

2.1. A basic example; original and depleted forms of the triadic Sierpinrki carpet ( b  = 3, 

We first recall the construction of the plane fractals called Sierpitiski carpets, when 
they are viewed as collections of bonds. The general idea is to start with a quadratic 
lattice in the plane and to erase some of its bonds. Beginning with a square, one 
divides it into b2 subsquares ( b  is the base or the rescaling factor) and one declares 
that some of these subsquares form a ‘trema’ ( = hole). Thereafter, bonds are prohibited 
from crossing the trema, but they can belong to a trema’s boundary. Usually, the 
number of subsquares in the trema is of the form 12, with 1 an integer. In each subsquare, 
a smaller trema is similarly positioned. In a first approximation, which will be discussed 
momentarily, the resulting fractal is self-similar and its fractal dimensionality, D, is 
given by b D  = ( b2 - 1 2 ) .  

Figure 1 shows two stages of construction of the original triadic carpet, for which 
b = 3, 1 = 1, and the trema is at the central subsquare. Here D satisfies 3 O  = 8, hence 
D = 1.89t. 

Now, let us introduce and investigate a depleted form of the carpet. We start as 
in the original triadic construction, subdividing each square into 3* subsquares. The 
novelty is that, when we eliminate the central subsquare, we also eliminate the bonds 
that bound it. Two steps of this construction are illustrated in figure 2. 

The different shapes that are obtained after one step can be counted in several 
distinct ways. In a first step examined in this subsection, we do not take account of 
the different orientations, e.g. we consider the semi-open squares 0 and E as being 
the same shape. The first iteration yields four full squares and four squares that are 
open at one side (a, c, f, h, and b, d, e, g respectively, see figure 2 a ) ,  yielding the 

l = l )  

t The carpet is not quite self-similar because-just as in the first example in § 1.1-the eight subcarpets 
ovelap along intervals. The carpet becomes self-similar if, for example, one deletes the top and right sides 
of the original square, and the bottom and left sides of each trema. Thus, the carpet is more accurately 
described as the sum of a self-similar set ( D =  1.89) and of a denumerable collection of lines ( D =  I ) .  
However, taking this complication into account would make the intuitive treatment in 5 2 needlessly 
cumbersome, and this complication is automatically avoided in the rigorous treatment of § 3. 
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Figure 1. Two stages in the construction of Sierpinski carpet with b =3 ,  I = 1, D =  
log 8/log 3 = 1.89. 

( a )  ( b )  

Figure 2. Two consecutive stages in our construction, using 
b = 3 and I = 1 and starting from a ‘full’ square. 

formal equation 

0 + 4 0 + 4 0 .  

Figure 3. Subdivision of U-square (equation 
2.2). Subsquares J h are full squares (0). 
Subsquares a, c, d, e, g are denoted by (U) (we 
ignore diffeicnce in orientations) and b is 
denoted by ([:I). 

The second iteration repeats the procedure. Its initial squares are either closed (as 
above) or open along one side. An analogous equation for this second type of squares 
is 

U + 2 0 + 5 U +  lL1, (2.2) 
where 113 stands for a square which is open at two opposite sides. Equation (2.2) is 
illustrated geometrically in figure 3. Similarly, 

111 + 6 0 +  2111. (2.3) 
It is essential that iterations beyond the second create no additional figures. 

Being linear, the above scale transformation can be formulated in a three- 
dimensional vector space; for example, the vector (:) stands for one full square 0,  
zero 0 squares and zero [:] squares. Further, the transformation involves an interscale 
transfer matrix (TMF) operating on vectors on the right, namely 

Operating k times with the TMF on the initial vector yields a vector which has 
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non-negative components, and describes the frequency of each shape after k iterations. 
In the present example, the TMF has the eigenvalues A I  = 8 ,  h 2 = 3 ,  h 3 = 0 ,  and the 
corresponding right eigenvectors (to be discussed below), are (!I, (-TI and [-:I, 
2.2. Triadic Sierpin'ski carpet with enlarged state space: first step 

We now enlarge the geometrical space on which the TMF operates. f n  the first step, 
we add three figures that cannot be created starting with the vector ($ .  This yields a 
six-dimensional parameter space of shapes: 0, U, [:I, but also 3 (square with two 
neighbouring sides), 2 (square with only one side left) and [:: (square with no side 
left). The new TMF takes the form 

U [:I rJ r-7 r - .  

0 4 2 0 1 0 0  

[ : l o  1 2  2 3 4 
: J o o o 1 2 4  
~ 0 0 0 0 0 0  

8 ,  
U c _ i  

0 4 5 6 4 3 0  

3 0  I 0 0 0 0 0 

(2.5) 

where the order of the columns (as well as that of the rows) is self-explanatory. This 
TMF (Gefen 1983) has the eigenvalues A ,  = 8, A 2  = 3 ,  h3 = 1, = A s  = h6 = 0. 

2.3. Triadic Sierpin'ski carpet with an enlarged state space: second step 

Let us introduce a distinction between 0 and 3, and more generally between all the 
different possible orientations of the shapes considered in $3 2.1. The resulting 16 x 16 
TMF has the eigenvalues A ,  =8,  A , = .  . . =A2=3,  A 6 = .  . . = A g =  1, Ala=. . . = A l , = O .  

2.4. General (non-triadic) Sierpin'ski carpets 

The case where b - l = 2  and the trema is positioned in the centre involves the same 
three-dimensional space as in equation (2.4). Unless otherwise stated, we do not 
distinguish between orientations. Hence, only the shapes that result from an initial 0 
are considered. The TMF is found to be 

0 0 [:I 

21 

2 

1 

b2-12- / -2  b2-12-21 

that is 
U 0 [:I 

2 0 

This TMF has the eigenvalues A ,  = b2 - l 2  = 46 - 4, A 2  = b, A 3  = 0. 

(2 .6a )  

(2.6b) 
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Changing the initial vector often necessitates an enlarged parameter space. Thus, 
if one starts from a (and again b - 1 = 2) ,  the possible shapes are 17, U, [I] and a, 
and the TMF is 

U [:I 3 
2 0 

3 b - 4  b - 2  2b -4  26 2 i - 2 1  2b -4  ' (2.7) 

0 0 1 

This TMF has the eigenvalues A I  = 4b -4,  A 2  = b, A ,  = 1 ,  A4 = 0. 

2 x 2  matrix 
For the case b - 1 > 2 (again the trema is in the centre), the TMF is the following 

0 
b2-12-41 b2-12-41-b 

(2.8) 

The TMF has the eigenvalues A I  = b2 - 1 2 ,  A 2  = b. Taking the orientations into account 
yields the TMF 

0 U 3 E n 
0 l b 2 -  12-41 b 2 -  12-41 - b b2-  12-41 - b b2-  12-41 - b b 2 -  12-41 - b\ 

(2.9) 
l i b  1 1 1 

1 l+b 1 1 
E 1 1 1 l + b  1 

; 
n 1 1 1 1 1-b 

This TMF has the eigenvalues A I  = b2 - A 2 ,  A 2  = . . . = A S  = b. 

2.5. Low lacunarity lattices of base > 3 

For symmetric constructions with 

17 
0 ( b 2 + 2 b +  1)/4 
U [  2b-2  
[:] ( b 2 - 4 b + 3 ) / 2  

1 = ( b  - 1) /2 ,  like that in figure 4, the TMF is 

U [:I 
( b 2 -  1 ) /4  ( b 2 - 2 b - 3 ) / 4  

2b -1  26 1. (2.10) 
( b 2 - 3 b + 2 ) / 2  ( b 2 - 2 b +  1 ) / 2  

This TMF has the eigenvalues A I  = b 2 -  l 2  = 3 b 2 / 4 + f b  - 114, A 2  = b and A, = 0. 

2.6. Sierpin'ski gasket 

In this interesting limit case, shown in figure 5, our algorithm continues to apply. The 
four-dimensional figure space contains the shapes A, A ,  9, h, and the TMF is 

A A C A  
A 1 0  0 0 O\ 

This TMF has the eigenvalues A ,  = 3, A 2  = 2, A 3  = 1, A 4  = 0. 

( 2 . 1 1 )  
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Figure 4. One construction stage for Sierpiriski carpet 
with symmetrically smeared lacunas. Here b = 7 and 
I=4. 

Figure 5. The Sierpidski gasket after two construc- 
tion steps. D = log 3/log 2 = 1.59. 

Yet another possible construction focuses on the ‘bonds’ rather than the geometrical 
shapes. The Sierpiriski gasket is geometrically equivalent to the Sierpiriski carpet with 
b = 2  and 1 = 1 (figure 6). Here the tremas are not symmetrically located, and care 
should be taken to distinguish the different possible orientations of the squares. The 
resulitng 16 x 16 TMF has the eigenvalues A I  = 3, h2 = h3 = 2, h4 = . , . = h8 = 1, and 
A 9 = .  . . = A16=0.  

Figure 6. The Sierpidski carpet with b = 2, I = 1 after 
two construction steps. This structure is equivalent 
to the Sierpidski gasket (figure 5) with the same 
D = log 3/10g 2 = I S9.  

Figure 7. Modified construction of figure 6 with an 
initially full square, b = 2, I = I .  Internal bonds are 
eliminated when they lie on the boundary of the 
shaded area. 

2.6. Case where all the internal bonds are eliminated, except those adjacent to a trema 

Taking the last example ( b  = 2,1= 1)  and eliminating all the internal bonds, except 
those adjacent to a trema, we find that an initially full square yields the following 
equation 

a-+ In+ la+ 1E. (2.12) 

Here again we have to consider separately the different possible orientations. The 
geometrical construction which corresponds to equation (2.12) is shown in figure 7. 
The resulting 16 x 16 TMF has the eigenvalues A I  = 3, A 2  = h3 = 2, h4 = . . . = A ,  = 1, and 
h 9 = .  . .=h16=0. 

2.7. Euclidean spaces with dimensionalities d higher than 2 

The algorithm in 0 2.6 easily extends to d > 2. Again one must decide how to distinguish 
between different shapes (according to their faces, edges, orientations, etc.). For 
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example, consider the three-dimensional generalisation of the Sierpinski gasket (Man- 
delbrot 1982), constructed by connecting the midpoints of the edges of a tetrahedron, 
and eliminating the volume of the centre (bounded by the faces of the four new 
tetrahedra). One possible variant consists of eliminating all the faces that bound the 
eliminated central volume. The shape-space is now five-dimensional (the possible 
shapes are a ‘full’ tetrahedron, a tetrahedron with one missing face, two missing faces, 
etc). The TMF is 

0 0 0 0 0  1; d i 
0 0 0 1 4 .  

(2.13) 

This TMF has the eigenvalues A I  = 4, A 2  = 3, A 3  = 2, A 4 =  1, A 5  = 0. The 16 X 16 TMF, 

where different orientations are distinguished from each other, has the same eigenvalues 
as the TMF of (2.13), except that A 2  and A 4  are four-fold degenerate, and A 3  is six-fold 
degenerate. 

2.8. General properties of the TMF for the non-random algorithm: the eigenvalues 

The non-random constructions have been formulated via a TMF. The elements of this 
matrix are non-negative integers, but in general it is not symmetric. However, it turns 
out in every instance that the eigenvalues are non-negative real numbers; in general 
they are integers. For every TMF all the columns add to the same integer, c. Since the 
vector (1, 1 , .  . . , 1)  is clearly a left eigenvector, c turns out to be the largest non- 
degenerate eigenvalue; it is equal to b2 - l 2  for the Sierpinski carpet. Each component 
of the right eigenvector associated with c is positive, a consequence of the Perron- 
Frobenius theorem. 

One should note that A I  = c = b2 - 1’ = bD, where b is the rescaling factor, and D 
is the global fractal dimensionality, which can be defined without using our algorithm. 
That is, 

D=lOg AI/lOg b. (2.14) 

But in addition, each smaller positive eigenvalue A,  injects afractal eigen-dimensionality, 
defined as 

Di = log Aillog b. 

The geometrical configuration we obtain involves intrinsically a number of distinct 
geometric objects with fractal dimensionalities smaller than D. 

Eigenvalues equal to 0 play a particularly interesting role. Defining the minimal 
parameter space needed for a given construction we observe that the TMF may be 
either regular (e.g., (2.8)) or singular (e.g., (2.6)). I n  the cases we studied, the T M F  is 
singular when the order of ramijcation is Jinite. We should recall that the order of 
ramification at a point P is the number of points (bonds) that must be erased in order 
to isolate an arbitrarily large portion of the lattice containing P (Mandelbrot 1982, chap 
14). This notion is important in physics: for example, it was shown that for finitely 
ramified magnetic systems with finite range interactions, the critical temperature is 
zero (Gefen et a1 1980, 1981a, 1983, 1984). 
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2.9. General properties of the TMF for the non-random algorithm: the eigenvectors 

The eigenvectors may also have some simple geometrical interpretation. Denote by 
U, ( i  = 1,2, . . . ) the right eigenvectors corresponding to A,  ( i  = 1,2, . . . ). Let the initial 
vector be expanded as U = Zap, ,  with a, f 0. After repeated iteration, the frequencies 
of the various geometrical shapes become proportional to the components of v i .  The 
fact that the other eigenvectors consist of both positive and negative components means 
that we cannot find an initial configuration that results in a single set with a fractal 
eigendimensionality smaller than D. Nevertheless, the existence of such sets (simul- 
taneously with the set of global dimensionality D) cannot be denied. A simple example 
is the case described by the TMF in (2.7). Two stages of construction with an icitial 

square, b = 3 and 1 = 1 are shown in figure 8. The global fractal dimensionality of 
this figure is D = log 8/log 3 = 1.89. However, it is easy to see that this figure contains 
a subset converging towards the point A. For example, the fractal eigendimensionality 
D3 = log A,/log b = log l/log 3 = 0 reflects the presence of a set that reduces to such a 
subset. 

Figure 8. The construction (2.7),  with an initial square after two steps. There is a subset 
converging towards the point A. 

Other interesting properties were found by comparing ‘families’ of lattices that 
share the same A , ,  hence the same 0, and the same shape space. An example consists 
of Sierpinski gaskets with D =log 32/log 6, as shown in figure 9. The resulting TMFS 

are listed below, with the corresponding eigenvalues and eigenvectors. We use the 
Dirac ‘bra’ and ‘ket’ notation, ( and ), to denote non-normalised left and right 
eigenvectors. The different lattices are denoted by A, B, . . . , E. 

The TMF of A is 

0 0 1:3 3 

Here, 

(2.16) 

A i A  = 32, h Z A  = 6 ,  h 3 A =  1, A4A = 0, 
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A B 

C D E 

Figure 9. Five different fractals which belong to the same 'family'. 

The TMF of B is 

U 0 [:I 3 

Here, 

A,'= 32, A2' = 6 ,  A,'= 1, = 0, 

(2.17) 
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The TMF of C is 

cl U 1:1 2 
16 1 1  6 

2 0 0 0  

Here, 

(2.18) 

A4' = 0, C 
A 3  = 1 ,  

(c , l=  (1, 1, 1 ,  11, (CZJ = (8, - 5 ,  -18, -181, 

(C3I = (o,o, 0, 11 ,  (c41 = ( 1 ,  -1,9, -3). 

The TMF of D is 

cl U 1:1 2 
[3 24 22 20 20 

H O  0 0 0 .  
2 0 2 4 4  

Here, A I D  = 32, A 2 D  = 4, A3D = A A D  = 0, a possible choice of the eigenvectors is 

(2.19) 
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The TMF of E is 

0 U 1:3 3 

Here 

= 32, A2E = 5 ,  A 3 E =  1, h4E = 0, 

(2.20) 

The above lattices A to E, and all the other examples we have considered, satisfy the 
following relation (derived by Yigal Meir) 

(2.21) 

Relation (2.21) is by no means a general property of stochastic matrices. It is a 
consequence of strong constraints imposed by our general geometrical constructions, 
as will be seen in 0 3. 

2.10. Randomised forms of the same constructions 

One natural way to randomise our procedure is to choose the trema at each step at 
random, giving each subsquare (or subtriangle, etc.) equal probability, and then 
averaging over all possible TMFS. Working out the random Sierpifiski gasket case we 
find the TMF to be 

This TMF has the eigenvalues A I  = 3, A 2  = 312, h3 = 314, A4 = 0. The equivalent random 
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Siepinski carpet with b = 2 and 1 = 1 yields 

0 0 r-J 2 

(2.23) 

This TMF has the eigenvalues A ,  = 3, A 2  = 312, A 3  = 314, A 4  = A 5  = 0. The only change 
from the previous example is that the zero eigenvalue is doubly degenerate. 

A more thorough randomisation is achieved by allowing the number of tremas at 
each step to vary, keeping only their average number fixed. 

The above examples and many others suggest that many features of the TMFS of 
non-random constructions are left unchanged by randomisation. But there are impor- 
tant differences. In the random case, the components of the average TMF, while real 
and positive, are not necessarily integers. The sum of each column is still constant, 
hence the argument in B 2.8 shows that this constant is eigenvalue associated with the 
global fractal dimensionality. The corresponding eigenvector consists of positive 
components. However, the geometrical interpretation of this eigenvalue, as well as 
the definition of fractal eigendimensionalities, are not quite obvious, since it is not 
evident that they have to do with the average TMF. 

The random TMFS obtained in this fashion correspond to fractal constructions 
where at each step different parts of the lattices may be decorated using different rules. 
Another situation occurs if at each construction step all parts of the lattice are decorated 
according to the same rule, but the rule at each step is selected at random. This 
corresponds to a random product of TMFS. It would be interesting to study such 
random products, and to identify the related fractal dimensionalities. When the TMFS 

are selected from the same family (in the sense discussed in 0 2.9) we find that 

A:' = A , ~ A , ~ ,  (2.24) 

where A:' is the ith eigenvalue of the product of matrices X and Y.  In this case the 
analysis of the dimensionalities involved is straightforward. We still need a better 
understanding of the last relation. For instance, one might ask whether it is connected 
with equation (2.21). 

3. Rigorous mathematical treatment 

3.1. Summary of the main results 

The main results of this section concern the eigenvalues of non-random enlarged TMFS, 
for which different orientations are regarded as different shapes. Although the dis- 
cussion presented below is quite general, we begin with a specific example. Let us 
study the carpet constructed by iterating the shape shown in figure 10. One may now 
consider the set S of the subsquares (s = 1,2, . . . , 9 )  and two mappings, 4 and T of 
this set: 4 ( s )  is the set of edges of s which are contained in the boundary of the initial 
squares; T(S) is the set of edges of s which are not contained in the eliminated squares 
or in the boundary of the initial big square. Thus, e.g., +( 1) = {n, w} and T( 1) ={e}. 
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n 

W 

s 

Figure 10. A general non-random carpet: see 8 3 . 1 .  

Table 1 lists the other values of 4(s) and T ( s ) .  In this example, each of the 16 
eigenvalues of the TMF may be calculated as follows: we choose a combination of 
some elements of e, w, s, n, e.g., I = {n, w} (notice that there are 16 possible 
combinations). We now count the number of squares s such that 4(s) contains I .  
According to table 1 there is only s = 1. The number of these terms, one, is an eigenvalue, 
A,, of the TMF. This suggests a geometrical interpretation of the eigenvalues: for I = 0, 
A ,  = 9, the number of subsquares, which is related to the primary fractal dimensionality. 
For I = {n}, A, = 4, which corresponds to a partial fractal dimensionality of 1 (which, 
in this case, is the upper edge of the square in figure 10). I = {n, w} yields A ,  = 1 
(a fractal eigen-dimensionality of zero) describing a subset which converges to the 
north-west point. 

Other properties of the TMFS, as well as the orthogonality of the eigenvectors of 
‘families’ of TMFS (equation 2.21) are also discussed. 

Table 1 

S 1 2 3 4 5 6 7 8 9 

3.2. Notation 

I f E  is a set, then 2 €  stands for the set of subsets of E. If I and J are in 2 € ,  then I A J  
is the subset of E, the elements of which belong to either I or J but not to both of 
them. The number of. elements of a set I is denoted by # I .  

3.3. Dejnitions 

Let E be a finite set. An E-chessboard is a triplet (S, T, 4), where S is a finite set and  
T and 4 are mappings from S to 2 €  such that, for every s in S, T ( S )  fl4(s) = 0. 

Two square matrices, A and M, indexed by 2 €  X2€, are associated to a chessboard: 

A = { a : } , , , F Z ~ ,  a: = # { s  E S ;  d(s) 3 I and T ( S )  = J}, (3.1) 
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M = { m : } I , J E 2 E ,  m:=#{sES; T ( s ) U ( I n + ( s ) ) =  J } .  (3.2) 

It is clear that if I fl J # 0, then a: = 0. It should be realised that M is essentially a TMF. 
If a square s is in S, ~ ( s ) ,  the type of s is the set of its edges, which are not the 

edge of a trema and which are not contained in the boundary of the initial square. 
The function + describing the position of s in the square is defined as follows: +(s) 
is the set of the edges of s which are contained in the boundary of the initial square 
of type 0. 

If, instead of starting from such a square, one starts from a square of type I,  then 
the type of s was to be modified: one should add the part of the boundary of s contained 
in the boundary of the big square corresponding to I. In other words, as an offspring 
of a square of type I, a square s has the type T ( S )  U ( 4 ( s )  n I ) .  Thus M is a TMF. 

Generally speaking, TMFS are obtained from matrices M by either grouping some 
types of squares or by taking a sub-matrix which corresponds to a recurrence class. 

3.4. Expression of M in terms of the a's 

Proposition. If ( S ,  T, 4 )  is an E-chessboard with matrices A and M, then, for I and J 
in P , m :  = z K c l  zLcK (-1)IKl+lLIa;AL. 

We prove it by induction. Let H, be the following property: for any chessboard 

It is obvious that Ho is true. It has to be proven that H, implies H,,,. 
Assuming H, is true, 111 = v and i E E\I, the following relation has to be shown: 

the above formula is valid for an I the cardinality of which is not larger than v. 

IK(l+ILI+I K U { I )  
~ J A L  

m:U(i) = C C (-l)IKI+ILI K + 
a i A L  C C ( - 1 )  

K c I  L c K  K c I  L c K  

Two cases may occur: 
(a) i E J. If so the following auxiliary E'-chessboard (SI,  T I ,  4 ' )  is of interest: 

E'=E\ { i } ,  S ' = { s € S ;  ie 6(s)} ,  T ' ( s ) =  ~ ( s )  and $ ' ( s ) = 4 ( s ) \ { i } .  It has matrices A' 
and M' and, if K and L are in 2E' ,  

a L K = # { s ~ S ; + ' ( s ) 3  K a n d ~ ' ( s ) = L } = a ~  K U { i )  

and 

m : U ( i ) = # { s E S ;  7 ( ~ ) U [ 1 U { i } ) n 4 ( s ) ] = ~ }  

= #{s E S ;  U ( z n  4(s))  = J )  

- #{s E s'; T ( s )  u ( ~ n  4(s))  = J }  

= m: - m>'. 

Therefore, using Hv, 
m:'(j)= C C ( - 1 )  K l + ' L ' ( a & L - a j A L )  rK  

K c l  L c K  

But a K U { i l  J A (  L U { i } )  = 0, therefore equation (3.3) is valid. 
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(b) i E J. If so, a different auxiliary E'-chessboard (S", T", 4") is used: s"= 
{ S E  S ;  i E  ~ ( s ) } ,  T " ( s )  = T(s)\{~}, +"(s) = +(s). It has matrices A" and M "  and, if K 
and L are in 2 E ' ,  

a n K  = # { s € S ;  7 ( ~ ) 3 i ,  T ( s ) \ { i } = L a n d + ( s ) ~ ~ } = a ~ u : , ( i ,  

and 

m:Uii) = # { s  E S ' ;  T ( s ) U [ ( I  U {i}) n 4(s)]=J} 

+ # {s E S ;  i E +( s) and 7( s) U ( I  fl +(s)) = J }  

= # { s  E s'; T ' ( s )  U ( I  n +'(s)) = J\{i}} 
+ # { S E  S";  .r"(s)U(Zn +"(s ) )=J \ { i } } .  

Therefore, using H ,  and the expressions for akK and 

m : u i i ) =  ( - l ) i K l + i L ' ( a ~ ~ i i ) ) A L + a ~ ~ ~ i , ) A L )  
K c l  L c K  

3.5. Sum of chessboards 

Let (9, +', 7') and (S", + ' I ,  7") be two E-chessboards. Let s be the disjoint union of 
S' and S" and + and 7 the mappings from S to 2E, the restrictions of which to S' and 
S" are +', 4'', 7' and 7". Then (S, 4, T )  is also an E-chessboard and their matrices are 
related as following: M = M ' +  M "  and A = A'+ A". 

3.6. Product of chessboards 

Let (S ' ,  +', 7') and (S", +", T " )  be two E-chessboards. Let S be the Cartesian product 
S' x S" and define 
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So, with obvious notation, 

m:= miiKm;(‘, 
K s Z E  

therefore M = M”M’ .  

3.7. Spectral study of TMFS 

Theorem 1. Let M be a TMF associated to an E-chessboard ( S ,  4, T ) .  Then the 
eigenvalues of M are the numbers 

A l = # { s ~ S ; 4 ( s ) 1 I } =  a: ( I E 2 € ) .  
J s Z E  

Theorem 2. I f  M’ and M” are TMFS associated to E-chessboards, then the eigenvalues 
of M = M”M’ ,  M‘ and M“ are related by: 

A I  = A ’ , A l  ( I  E 2 € ) .  

The proof of the first assertion is carried out by induction on IEl. Let i be an 
element of E. If I and J are in 2 € ‘ j i ) ,  then, by the preceding proposition, 

,:UCi)= m;+ ( - ~ ) l K l + I L l + l  K U { i )  
~ J A L  

K c l  L c K  

and 

Therefore the matrix M assumes the form: 

where m:J = m:, my’ = and 

The matrices M I ,  M ’  and M” are the TMFS of E\{i}-chessboards. Namely, M I  is the 
matrix of the E\{i}-chessboard (SI, 4,, T ~ )  defined as follows: SI = {s E S, i i t  ~ ( s ) } ,  
T~ =  TI^,, c # ~ ~ ( s )  = 4 ( s )  fl (E\{ i } ) .  M ‘  and M“ are the matrices of the chessboards 
(S‘, 4’, T ’ )  and ( S ” ,  4”, T”) which have already been defined in 9 3.4. 

It is now easy to determine the eigenvalues of M :  

MI-A  M I - M ’  
M“ MI’+ M ’ -  A 

det( M - A )  = det 

Mi + M ”  - A MI + M ”  - A ( M ”  M”+ M I -  A 
= det 
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= det 

By the induction hypothesis, the eigenvalues of M ‘  are the numbers 
{ Z , c E , , ( j l  (a?’(i)}IcE\(l~ and those of MI + M” are { Z J ~ E \ ~ ~ , ( ~ : +  ~ ~ U ~ ~ ] ~ } I = E \ ( ~ ~  and the 
first assertion of the theorem is proved. 

The second assertion results from the formula A I  = # { s  E S ;  4(s) 3 I }  and from 
the definition of the product of two chessboards. 

3.8. Remark on the orthogonality relations equation (2.21) 

Let us consider two TMFS, M and N, associated to E-chessboards. Assuming M and 
N are diagonalisable, one can find right and left eigenvectors for M and N, so that 
the relation (2.21) holds. This is proved by employing the decomposition 

4. Discussion and directions for further study 

The present paper presents an algorithm of constructing geometrical shapes with which 
a multiplicity of non-integer fractal dimensionalities can be associated. It indicates 
some of the general features of the TMF related to both the non-random and random 
construction (§§  2.8 and 3 respectively). The richness and the generality of our 
algorithm allows for further extensions and modifications of such constructions. We 
emphasise that a deep and rigorous mathematical understanding of the striking proper- 
ties of the TMF is still lacking. Further study of the fractal eigen-dimensionalities and 
the geometrical interpretation of the eigenvectors associated with them, as well as 
additional effort in understanding the singularities of the TMFS are needed. The situation 
in the random cases is even less obvious, and in addition to the preceding points one 
should consider how an appropriate averaging in the random case should be performed. 
We hope that our preliminary study will stimulate such efforts. 

Finally, we would like to comment on the possible application of the inethod 
d’escribed here to physical problems. It is tempting to use this approach to study 
self-similar structures that appear in nature. Results on the analysis of percolation 
clusters using TMFS will be published elsewhere (naturally, in that case randomness 
plays an important role). We hope that our work will stimulate studies of other 
problems, including kinetic ones (e.g., structures of diffusion limited aggregation) by 
the means furnished here. 
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